
ENHANCEMENTS TO THE IBM VERSION OF COSMIChVASTRAN

W. Keith Brown
RPK Corporation

Hayes, Virginia

SUMMARY

N89- 22946

Major improvements have been made to the IBM version of COSMIC/NASTRAN by RPK
Corporation under contract to IBM Corporation. These improvements will become part of
COSMIC’S IBM version and will be available in the second quarter of 1989. The first improvement
is the inclusion of code to take advantage of IBM’s new Vector Facility (VF) on its 3090 machines.
The remaining improvements are modifications that will benefit all users as a result of the extended
addressing capability provided by the MVS/XA operating system. These improvements include the
availability of an in-memory data base that potentially eliminates the need for I/O to the PRIxx disk
files. Another improvement is the elimination of multiple load modules that have to be loaded for
every link switch within NASTRAN. The last improvement allows for NASTRAN to execute above
the 16 mega-byte line. This improvement allows for NASTRAN to have access to 2 giga-bytes of
memory for open core and the in-memory data base.

INTRODUCTION

Very few changes have been made to the IBM version of COSMIC/NASTRAN in the last few
years in order to take advantage of new hardware capabilities and new MVSKA operating system
features. One of IBM’s new hardware capabilities is the Vector Facility that provides significant
CPU time reductions for programs with vector operations (Reference 1). Use of IBM’s new Vector
Facility allows NASTRAN to solve larger problems in a much faster manner. Problems that spend
a large amount of CPU time in symmetric decomposition, matrix multiplication, forwardbackward
substitution and eigenvalue analysis could greatly benefit from use of the Vector Facility.
NASTRAN has been modified to take advantage of the Vector Facility in these areas.

With the release of MVS/XA, IBM allowed users to reference up to 2 giga-bytes of memory in
a given job step. However, NASTRAN could only run under the 16 mega-byte line because of the
assembly language code and the memory management design. Of the 16 mega-bytes, the most a user
could get was about 8 mega-bytes because of the operating system. Although 8 mega-bytes was
probably acceptable for open core, it was insufficient to contain any in-memory data files.
NASTRAN has now been modified to allow it to execute above the 16 mega-byte line and this in
turn allows access to a maximum of 2 giga-bytes of memory.

With access to 2 giga-bytes of memory, NASTRAN can now have the option of keeping DMAP
files in memory. These files were previously written to the PRIxx files using BSAM I/O. This in-
memory capability has been implemented and the implementation automatically allows for the use
of external files when memory for the in-memory files has been exhausted. The end result of this

159

feature is that job turnaround will be improved because of the reduction of disk YO.

Lastly, NASTRAN was previously delivered as 16 load modules. One load module was always
resident. The other 15 load modules were loaded into memory when needed but only one could
reside in memory at a given time. If a new load module was needed, the current memory-resident
load module would be deleted and the new load module loaded in its place, Therefore, as NASTRAN
was processing the job, load modules would be loaded and then deleted to allow for other load
modules. This resulted in lost time. Though the time that was lost was not appreciable, NASTRAN
is now designed to eliminate this reloading procedure and all of NASTRAN now remains completely
in memory.

EXECUTION TIME OPTIMIZATION CONSIDERATIONS

There are several considerations that a user should be aware of when trying to setup his NAS-
TRAN run for optimal execution time. First, a user should be aware of the amount of open core that
he may need. If open core is not large enough, users may experience severe execution time
degradation due to possible spilling during decomposition or multiple passes on matrices used in
matrix multiplication or forward-backward substitution. There is no single formula that may be used
to determine the amount of open core needed for all cases; however, the following formulas provide
some rough estimates.

Size = 6 * (larger of (number of degrees of freedom in the a-set)
or (number of degrees of freedom in the o-set))

* (number of output cases (e.g., number of loads or number of eigenvalues))

Size = .04 * (square of degrees of freedom in problem)

The above formulas are crude and should only be used as rough estimates. Users should check all
symmemc decomposition messages to determine if any spill groups were required and also all
matrix multiply-add (MPYAD) messages to determine if multiple passes were required. If either
spill groups or multiple passes were required, then open core should be increased.

In addition to the amount of open core given to a problem, all problems will benefit from the
use of the in-memory data base. The size of the in-memory data base is controlled by the REGION
size given by the user, the memory to be returned to the operating system and the memory to be used
for open core. The amount of memory to be used by the in-memory data base is computed as follows:

DB Size = (Region Size) - (Open Core Size) - (Operating System Memory)
- (NASTRAN Load Size)

(Note, the size of the NASTRAN load module is approximately 8000k bytes)

The in-memory data base capability eliminates much of the I/O performed by NASTRAN. This
results in faster turnaround and faster execution. CPU savings will be of the order of about 5%
for most problems.

160

USE OF IBM’s VECTOR FACILITY

The modifications to NASTRAN took advantage of IBM’s new Engineering and Scientific
Subroutine Library (ESSL) (Reference 4). This library is a set of high performance mathematical

Efficiency improvements come also from the use of IBM’s new Vector Facility. IBM’s new
Vector Facility allows programs with vector operations to use vector instructions for faster CPU
execution (Reference 2). Inherent in the use of vector hardware is the length of the vector(s) to be
processed. Due to the startup time and other associated overhead that goes with vector processing,
vectors must be of a certain minimum length before CPU gains can be realized. In some cases where
the vectors are very short, degradation can occur and longer CPU times can result. In general, vectors
should have a length of 10 elements or more for real CPU gains to be realized. This is true for the
majority of problems in NASTRAN.

I
I NASTRAN has been optimized for vectorization in the following areas: symmetric decompo-

mamx multiplication (Reference 3). The gains to be realized to a user are dependent upon the
i sition, forward-backward substitution, eigenvalue analysis (Givens, Inverse Power and Feer) and

amount of the total CPU time that is spent in these areas. For most CPU intensive runs, analysis
shows that these are the areas where most of the CPU time is used.

I ,

Figure 1 shows improvements that were made on a statics, a normal modes and a frequency

computer. A decrease of approximately 10% of the total CPU time could be realized if these
problems were run on an IBM 3090s computer. The vector affinity column gives a measure of how

vector code, the ability to have larger open core (eliminating multiple passes in matrix multiplication
and forward-backward substitution) and the use of the in-memory data base (eliminating much of
the I/O).

1

I

response problem using the optimized version of NASTRAN. The jobs were run on an IBM 3090E

much of the CPU time was spent in vector computations. Efficiency gains were realized from the

I

I

~ , Depending on the problem characteristics, percentage improvements can vary greatly. There-
fore, there is no hard and fast rule that users can use to show improvements. However, Figure 2

figures are given only so the user can have some idea of expected improvements using the Vector
I
I

shows percentages that may be obtained during various matrix operations in NASTRAN. These

I Facility.

I USE OF IBM’s EXTENDED ARCHITECTURE (MVSIXA)

Prior to the release of IBM’s MVS/XA operating system, the MVS operating system was based
on 24-bit addressing. This meant that any given program could not address more than 2**16 bytes
or 16 mega-bytes of memory. Of this 16 mega-bytes, approximately 8 mega-bytes were available
to a program because of the operating system requirements. As software developments proceeded,
especially in the area of graphics, and as user problems to be solved became larger, it became
apparent that there was a need for programs to have access to more memory. With the coming of
MVS/XA, IBM switched to 3 1-bit addressing and this allowed for 2**31 or 2 giga-bytes of memory

161

to be available. Many of the IBM-supplied compilers were modified to take advantage of this and,
most noticeably for NASTRAN, was the IBM VS Fortran compiler (Reference 5). Users could now
write programs in Fortran and take full advantage of the 3 1-bit addressing capability (Reference 6).

The 16 mega-byte line that resulted from 24-bit addressing still exists in a limited sense for
programs that have assembly language subroutines. Assembly language subroutines that perform
1/0 functions must execute in 24-bit addressing mode with the possible exception of subroutines that
use execute channel program instructions (EXCPs) directly. Programs that have assembly language
I/O must be designed to take this into account. The assembly code and the I/O buffers must reside
below the 16 mega-byte line. In addition to the I/O considerations, sometimes assembly language
codes have other 24-bit design dependent considerations that require that they execute in 24-bit
addressing mode.

The previous IBM version of NASTRAN had a very small percentage of assembly language
subroutines (Reference 7). These subroutines were required to allow for dynamic loading of
NASTRAN load modules, to optimize computationally bound codes, to perform memory manage-
ment and to provide efficient random access I/O. Because of these codes, NASTRAN required
modifications to allow it to execute in 3 1 -bit addressing mode. The IBM version of COSMIC/
NASTRAN has now been redesigned to take advantage of 31-bit addressing. The new design
resulted in two load modules. One load module is called NASTRAN and it executes above the 16
mega-byte line. This load module contains all of the analysis code and is by far the larger module.
The other load module is called IO and it executes below the 16 mega-byte line. This module does
all the non-Fortran 1/0 functions required by NASTRAN. Open core and the new in-memory data
base reside above the 16 mega-byte line. Figure 3 shows this design.

New assembly language programs were created to allow for this design. The main program in
the NASTRAN load module is the assembly language program NASTRAN. The main program in
the IO load module is the assembly language program IO. The functions of the NASTRAN assembly
language program are given below:

1. Reads and processes the job step parm. The format of the job parm has been changed and
will be described below.

2. Initializes the Fortran run-time environment. The job parm is also passed by NASTRAN to
Fortran during initialization to allow users the ability to take advantage of the new Fortran
job parms that became available with Fortran Version 2. One such Fortran parameter that
is recommended for use is the “NOXUFLOW” parameter that suppresses a program
interrupt from a floating point underflow and allows for a hardware fixup instead of a
software fixup.

3. Performs memory management. The REGION value as given on the job step EXEC card
specifies the maximum amount of memory that NASTRAN can obtain. All memory that is
available after the loading of the program is obtained. Memory is then released for the
operating system use and the remaining memory is used by NASTRAN for open core and
the in-memory data base.

4. Loads the IO load module and initializes the interface between the two. This allows for
communication to all I/O subroutines that must reside below the 16 mega-byte line.

162

The IO program provides all of the non-Fortran VO for the NASTRAN data files.

The job step parm has been modified for this new level of NASTRAN. The format is as follows:

// EXEC PGM=NASTRAN,
// PARM=’NOXUFLOW,OSMEM=200K,OCMEM=7~K,DBMEM=100000K’

The parameters are defined as follows:

NOXUFLOW
OSMEM
OCMEM
DBMEM

Parameter to Fortran to suspend underflow interceptions.
Amount of memory to free back to the operating system.
Amount of memory to allocate for open core.
Amount of memory to allocate for the in-memory data base. A non-zero
value implies that memory is to be allocated for the in-memory data base.
A zero value eliminates the use of the in-memory data base.

The last three parameters determine how memory is to be allocated during the run. NASTRAN
f i s t obtains all memory available based on the job step REGION value. It will then release back to
the operating system the amount of memory as specified on the OSMEM parameter. The memory
that remains will all be given to open core if DBMEM=O. Otherwise, the amount of memory as
specified by the OCMEM parameter is designated for open core and all that remains is used for the
in-memory data base. If the memory for the in-memory data base is greater than that specified on
DBMEM parameter, the larger value is used. If there is a lesser amount of memory available than
that specified on the DBMEM parameter, then the lesser amount is designated. If there is only
sufficient memory for open core, then no memory is allocated for the in-memory data base regardless
of the value of DBMEM.

NASTRAN prints a summary of the load addresses and the memory allocations at the beginning
of the NASTRAN log file. A sample listing is shown in Figure 4.

IN-MEMORY DATA BASE

The in-memory data base will benefit users in job throughput and to a limited sense in CPU
utilization. Job throughput will increase because of the elimination of 110 to disk. The CPU savings
will be of the order of 5%. The in-memory data base is based on blocks of memory that are chained
together. There is one chain for free space. The block sizes in the free chain will vary. There is also
one chain for each DMAP file. Each DMAP file is a file in the in-memory data base. The size of
the blocks allocated for the DMAP files is based upon the size specified for the NASTRAN GIN0
files. Blocks of memory are allocated for a DMAP file as the file is written and pointers are
maintained as to the current block being processed. Memory that is available for allocation of the
blocks is maintained by the free chain. As files are opened for write with rewind, the previously
allocated memory data blocks to a DMAP file are released back into the free chain and a new DMAP
file chain is established. Savings are realized because there is no I/O taking place and also there is
no moving of data. All data being written into the DMAP file are written directly into the allocated
memory block with no secondary transfer of data.

163

The in-memory data base is designed so that when there is insufficient memory for additional
blocks of an existing DMAP file or for the creation of a new file, the external PRIxx, SECxx and
TERxx files are used as spill. Users should be aware that the PRIxx, SECxx and TERxx DD cards
are still needed, however the space allocations may need to be adjusted based on the amount of
memory provided for the in-memory data base.

A directory of the in-memory data base is provided when DIAG 2 is turned on. The directory
comes out after each DMAP module execution. Use of this DIAG is not recommended because of
the large amounts of printout that it may generate. Users may opt to use the following technique to
turn on DIAG 2 in order to get the in-memory data base directory at a specific point in the DMAP.

ALTER n $
PARAM//*DIAG*//2 $
ALTER n + l $
PARAM//*DIAGOFF*//2 $
ENDALTER $

where n is a DMAP instruction number.

A sample printout of the in-memory data base is given in Figure 5. The unit number defines the
unit number allocated to the DMAP file in the NASTRAN File Allocation Table (FIAT) and will
be used as the “xx’ ’ value to determine which PRIxx file is to be used for spill. The name field gives
the DMAP file name and the current number defines the current block at which the file is positioned.
For files that are closed with rewind, this value will be zero. For files that are closed without rewind,
this value will be the last block that was either read (file opened for read) or was written (file opened
for write). The in-mem blocks value defines the number of blocks allocated in the in-memory data
base to the DMAP file and the disk blocks value defines the number of blocks that could not be
contained in memory and were written to the PRIxx external file. The trailer values are the matrix
trailers associated with the DMAP file.

CONCLUDING REMARKS

The IBM version of COSMIC/NASTRAN has been enhanced to take advantage of IBM’s
Vector Facility and the extended addressing capability provided by IBM’s MVSKA operating
system. The enhancements include modifications to subroutines that can take advantage of the
Vector Facility, modifications to allow NASTRAN to execute above the 16 mega-byte line and
modifications to allow for a new in-memory data base. When all of the above features are used, users
will be pleased at the performance increase. In addition, these modifications open up the door for
larger problems to be analyzed on IBM that were previously not practical because of CPU
requirements and/or open core requirements.

164

TYPE OF
PROBLEM

Statics
Normal Modes
Freq. Resp.

Figure 1 . Samples of Improvements in CPU Utilitzation
(Problems executed on IBM 3090E computer)

SCALAR VECTOR VECTOR VECTOR CPU/
G-SET A-SET CPU CPU AFFINITY SCALAR CPU

(Sec.) (Sec.) (Sec.)

28828 11426 1264.3 672.3 520.2 53%
8946 225 634.9 382.6 205.8 60%
3852 3614 584.7 390.2 281.0 67 %

.

MATRIX OPERATION

Symmetric Decomposition

Forward-Backward Substitution

Matrix Multiply-Add Method 1

Matrix Multiply-Add Method 2

Mamx Multiply-Add Method 3

VECTOR CPU / SCALAR CPU

45%

33%

72%

53%

20%

Figure 2. Improvements in Matrix Computations

165

Relative Memory Address 0

IO Load Module

Memory for OS
16 Mega-Byte Line

NASTRAN Load Module

Open Core

In-Memory Data Base

Memory for OS

Figure 3. Memory Layout for IBM NASTRAN

ADDRESS OF BEGINNING OF NASTRAN LOAD MODULE = 04A009BO HEX
ADDRESS OF END OF NASTRAN LOAD MODULE = 0514D000 HEX
ADDRESS OF BEGINNING OF IO LOAD MODULE = 8000CF30 HEX

ADDRESS OF MEMORY OBTAINED
LENGTH OF MEMORY OBTAINED

= 0514D000 HEX
= OD17F000 HEX 219672576 DEC

MEMORY TO FREE FOR OS = 00032000 HEX 204800 DEC
MEMORY TO USE FOR OPENCORE = 005DC000 HEX 6144000 DEC
MEMORY TO USE FOR IN-MEM DATA BASE = OCB70FF8 HEX 213323768 DEC

ADDRESS OF BEGINNING OF OPENCORE = 0514D000 HEX
ADDRESS OF END OF OPENCORE = 05729000 HEX
ADDRESS OF BEGINNING OF IN-MEM. DATA BASE = 05729008 HEX
ADDRESS OF END OF IN-MEM. DATA BASE = 12299FF8 HEX

(NOTE: ALL UNITS ABOVE ARE IN BYTES)

Figure 4. Example of NASTRAN Printed Summary on Log File

166

MEMORY DATA BASE DIRECTORY
MAXIMUM ENTRIES= 100 CURRENT ENTRIES= 33

UNIT NAME CURRENT IN-MEM DISK
NUMBER BLOCKS BLOCKS

1 20 PHIG
2 6 SIP
3 22 SCRATCH1
4 9 CASECC
5 4 BGPDP
6 5 SCRATCH2
7 14 QG
8 12 KGGX
9 10 MI

10 19 MPTA
11 18 SCRATCH6
12 17 OEIGS
13 7 GPL
14 11 OPHIG
15 13 CSTM
16 8 EQEXIN
17 15 BGPDT
18 16 SIL
19 27 EST
20 29 GPECT
21 30 SCRATCH6
22 32 MDICT
23 23 LAMA
24 21 SCRATCH3
25 28 SCRATCH8
26 33 GO
27 34 USET
28 35 KFF
29 36 KFS
30 24 PHIA
31 25 SCRATCH4
32 26 SCRATCH5
33 31 USETD

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

41
1
1
1
2

39
3

406
1
1

26
1
2
3
1
2
2
1

10
33
41

3
1

29
14

440
3

32 1
15
2
2
2
3

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

14 8946
0 0
1 8946
1 1

1491 0
14 8754
0 0

8946 8946
14 14

32768 128
225 225

14 225
1491 0

0 8512
1491 2
1491 0
1491 0
1491 8946
560 0

82 1491
14 8946
2 0

225 0
14 4197

225 225
225 3972

0 8946
4197 4197
4557 4197

14 225
14 192
14 225
0 0

TOTAL IN-MEMORY BLOCKS = 1453
0 TOTAL DISK BLOCKS - -

TOTAL FREE SPACE IN WORDS = 48508896
NUMBER OF BLOCKS IN FREE SPACE CHAIN = 2585

TRAILER

2
0
2

279
0
2
0
6
1
0
6
2
0
0
0
0
0
0
0
6
2
0
0
2
4
2
0
6
2
2
2
2
0

2 8778 4906
0 0 0
1 192 214
0 0 0
0 0 0
2 8394 4794
0 0 0
2 486 75
2 281oooO
0 0 0
2 450 loo00
2 450 10000
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
6 1024 0

120 0 0
2 8778 4906
0 0 0
0 0 0
2 8394 loo00
2 450 5022
2 7944 loo00

2039 0 0
2 486 330
2 228 10
2 450 loo00
2 384 loo00
2 450 loo00
0 0 0

Figure 5. Example of In-Memory Data Base Directory

167

REFERENCES

1. IBM SYsted370 Vector ODerations, SA22-7125-2, Third Edition, August, 1987.

2. IBM Designing and Writing Fortran Programs for Vector and Parallel Processing,
SC23-0337-00, First Edition, November, 1986.

3. The NASTRAN Theoretical Manual, NASA SP-221(06), January, 1981.

4. IBM Engineering and Scientific Subroutine Libraw Guide and Reference Release 3,
SC23-0184-3, Fourth Edition, November, 1988.

5. IBM VS Fortran Version 2 Language and Librarv Reference Release 3, SC26-4221-3,
Fourth Edition, March, 1988.

6. IBM Fortran Version 2 Prorrramming Guide Release 3, SC26-4222-3, Fourth Edition,
March, 1988.

7. The NASTRAN Promammer’s Manual, NASA SP-223(05), Level 17.5, December,
1978.

168

